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LETTER TO THE EDITOR 

1 Ground-state energy corrections for antiferromagnetic s = z 
chains with short-range interaction 

V I Inozemtsevts and B-D DorfelZT 
t Laboratory of' Theoretical Physics, XNR,  Head Post Office PO Box 79, Moscow 
(Duhna). Russia 
f Humboldt Universit2t N Berlin, Fachhereich P h y s i  Invalidenstrase 110, 10099 Berlin, 
Federal Republic of Germany 

Received 1 July 1993 

A b s h c t  The leading finite-size effects in the description of the antiferromagnetic ground 
state of ID quantum s= t chains with non-nearest-neighbour short-range exchange are 
calculated in the framework of the asymptotic Bethe-ansatz method under a few general 
assumptions on the properties of scattering phases and energies of magnons. 

The onedimensional lattice spin chains have proven to be very useful objects for.study- 
ing the critical phenomena in quantum statistics [l,  21. The restriction to nearest-neigh- 
bour exchange allows one to transform the s= f spin systems to the fermionic ones 
with local quartic interaction [3] and to  establish their connection with ZD confonnal 
field theories [2, 4,5]. The critical behaviour of these chains i s  given by the k =  1 SU(2) 
invariant Wess-Zumino model [Z]. However, much less is known about the general 
spin systems described by the Hamiltonians 

with an arbitrary short-range exchange h d j ) .  Its behaviour with respect to criticality 
is definitely non-universal. So, it was strictly shown recently [6] that the model with 
next-nearest-neighbour exchange h&)= S,, +L6j.2+ ( j - N - j }  has a gap at A= I. 

For critical spin chains, besides well classi6ed systems with 0 < c < 1 there is a large 
variety of cases with c= 1 and e> 1. While the usual XXX model belongs to the &st 
class, its integrable generalizations to higher spins belong to the second one [7]. An 
important fact was established by de Vega [ 8 ] ,  who showed that c equals the number 
of nested Betheansatz systems of equations if the ground state is determined by their 
real roots. However, the proof relies on the nearest-neighbour case only. It is therefore 
of interest to.look for the conlirmation of this result for more general form of the spin 
exchange. 

For conformally invariant one-dimensional quantum systems with periodic bound- 
ary conditions and an even number of sites N the leading finite-size correction to the 
antiferromagnetic ground-state energy per site is related to the central charge via [4, 51 
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where 5 is the velocity of the lowest-lying elementary excitations. This relation will be 
used below to determine the central charge for the integrable model with non-nearest- 
neighbour spin interaction of short range [9]. The exchange integrals of [9] for infinite 
chains are of inverse square hyperbolic form 

and the nearest-neighbour case treated by Bethe is recovered as 1c-0. The solution to 
the diagonalization problem for the Hamiltonians with this type of exchange has been 
completely described in [9] for the infinite chains in the ferromagnetic regime J<O. It 
was shown that for arbitrary MEZ+ the M-magnon wavefunction ~ ( n l .  . . nM) reduces 
to the Bethe-like form in the asymptotic region In~-n"[ >>IC, i.e. the scattering of mag- 
nons is factorizable. The two-magnon phase shift $&, k2) is expressed through their 
quasimomenta k l ,  k2eR mod 2 s  as 

withf(k) containing the elliptic Weierstrass r function 191. The energy of the M-magnon 
state is 

E&)= 2 4%) (4) 
j -  I 

where ~ ( k )  is determined throughf(k) and its derivative. 
To find an appropriate description of the antiferromagnetic ground state at J>  0, 

one has to consider large but h i t e  N. The exact solution to this problem is still not 
available. Nevertheless one can use the asymptotic method of Sutherland which has 
been claimed to be valid for all integrable models [IO]. It consists in considering the 
wavefunctions of the infinite many-body systems only in the asymptotic region 
In~-n,l+oo instead of their exact values, and imposing periodic b.c. as was done by 
Bethe. In this way, one arrives, for this model, at the asymptotic equations of the Bethe 
ansatz (ABA) 

where the phase shift I$ is expressed through the parameters {k} as in (3) and the 
corresponding energy is given by (4). 

We shall show later that all the quantities referred to antiferromagnetic ground state 
can be found explicitly even in more general case, i.e. under very few assumptions about 
the properties of one-magnon energy ~ ( k )  and the functionf(k) in the formula (3) for 
the phase shift. Namely, hereafter it will be assumed that the derivatives of both these 
functions are continuous on ks(O,2n) and f ( k )  decreases monotonically on this 
interval: 
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As a consequence of the time-reversal invariance f ( k )  should be antisymmetric with 
respect to k = z : 

f(k) = -f(2n - k). (7) 

The function &(k) should be symmetric, ~ ( k )  = &(2n -k). The magnon dispersion is 
assumed to be soft as it would be for all the models with short-range interaction: 

E(k)lk-o--&dZ (8) 
where sign(c0) =sign(J). 

With appropriate choice of the branch of the logarithms one can represent (5) as 

wherepj= z-kjand the (halointegers {Qj} runover the interval [-emax, Q-1, emu= 
( N - M -  1)/2.  

Let us introduce the odd function p(k )  through the relation 

a = f ( - ~  - p). (10) 

It is determined by (10) uniquely on the real axis and increases from --K to K, p'(A) = 
-Lf(k(d))]-'>O. As 22-tio0, the first two terms in the p asymptotics are given by 

p(a)-*(-KFa-l). (11) 

~ 

The ABA equations now can be written as 

zzM(dj) = N - ' a  j =  1, . . . , M 
~ 

where z2&) has continuous first derivative on the real axis 

(13) 
1 M  

KN,=,  
z2M(a)=(zK)-1p(a)-- tan-'(&&). 

We adopt the usual hmothesis [ 11-1 31 about the structure of antiferromagnetic vacuum 
stat&, i.e. that it is formed by real roots of (12) at M=N/Z and the corresponding 
ascending sequence of { Q }  does not contain holes. Note that the~existence of at least 
one real solution to (12) at M = N / 2  can be proven for an arbitrary monotonically 
increasing function p(A) by using an argument similar to Griffiths [ 141. The root density 
cN(L) =dz,&)/dl. is normalized as 

m 

o&) dh= & . I-, 
This can be seen directly from (13) since the asymptotics ( 1 1 )  gives z&*m)=i i .  The 
equation for odd) reads 

m 

cda) =(2z ) -1pya)  - A(a-n.)o,(x) dn. 
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where A(A) = [n(l +A2)]-’. At N+a, it reduces to the Hrilthkn-like form 
m 

om(a) + j um(x),+i(L-a’) d x =  (2x)-lpya.). (15) 
-m 

The solution to (15) is found by Fourier transform: 

p ‘ ( ~ )  exp(-ipt) dz. (16) 
exp(ipL) s om@) =(zx)-*  

-m l+exe(-lpl) 

Inserting (16) into (4) gives the asymptotic energy per site: 
m 

E m =  lim N ’ E N j Z =  &(k(m3m(A)  dA 
N - m  

Now let us calculate the leading finitesize correction to (17). Following [15], one 
can transform (14) to an inhomogeneous linear integral equation for AodXn)= 
o,,,(A) - om@) with the solutiou 

where 

~ ( x )  being the logarithmic derivative of the Euler gamma function. The correction to 
the energy per site E, can be written in the form 

where 

The change of variables A - h z N ( A )  in combination with the definition of the root density 
U,&) now gives 

Here & ( Z N ) = @ ( ~ ( Z N ) )  has a continuous first derivative as follows from (7), (13) and 
(20). The sequence of numbers ( 2 )  is deked by the ABA equations (12): 

1 l Z  
4 2N N 

i ,=zN(a,+,)=--+-+-.  
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This enables one to apply the Euler-Maclaurin formula on the interval (-1/4+ 1/2N, 
1/4- 1/2N) for simplifying (21). The result reads 

It should be noted that any explicit expression for the function zN(A) and its inverse 
A(zN) has not been used up to this stage. Their explicit values are determined according 
to (13) by unknown roots of (12) at M=N/2. To evaluate the object of our interest, 
the constant in leading term of (22), it is'suEcient, in the Bethe case [16], to replace 
dn/dzN by its asymptotics as N+m, [nm(2.(zN))]-'. In this limit 6(zN)  becomes even. 
The fmal expression of its derivative at zN= a after returning to the k variable in the 
integrands of (15) and (20) yields 

The elementary excitations over the antiferromagnetic vacuum in the limit N-m 
are the s= 4 spin waves of Faddeev-Takhtajan type [17]. To evaluate the energy and 
momentum of such an elementary excitation, one has to make the usual assumption 
about the structure of the corresponding set of numbers {Q}. Let a be the position 
of the hole in this set determined by the 'rapidity' &=s. The linear integral equation 
of des Clohm-Pearson type for the root density in the presence of a spin wave reads 

The density distortion Ao&) = 6,(A) - om(A) does not depend on p : it is given by 

An,(a)=Ar'[P(a-s) - s(a-s)~ 

with P(A) defined by (17). By using this formula one immediately obtains explicit 
expressions for the energy and momentum of this excitation: 

. m  , 
kh(s)=NJ-m k(a)Au,(a) da=-k(s)+ (24) 

As can be seen from (7) and (24), the zero-momentum limit corresponds to large 
positive s. The expression for the sound velocity 6 reads 
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The denominator in (25) can be transformed as follows. The result of differentiation 
of k&) with respect to s reads 

The contribution of the first term in curly brackets vanishes since P(d) is proportional 
to d-' as d+m. The transition to the variable k in the integrands of (25) now yields 

5=(2n)-'cp,. (26) 

Comparing (22), (23) and (26) with ( 2 ) ,  we conclude that c = l  for all the models 
described by the BA-type equations (5).  

After having determined the central charge it is now straightforward to try to 
calculate the anomalous dimensions of the primary operators. Conformal invariance 
implies for the energies of the lowest-lying excitations 

where {x,}  are the dimensions and n,m=O, 1. .  . The excitation energies g,:; can be 
calculated in the leading order in Ar' if one considers, besides the vacuum distribution 
of the real roots, a finite number of holes in it near the ends. The calculations follow 
the lines of [ 181 an& [19]. This is possible if one assumes that the asymptotics of om@) 
and @(a) for large 2 are determined by a single pair of poles of their Fourier transforms, 
lying symmetrically on the imaginary p-axis. Using now the fact c= 1 it follows that 
both pairs must coincide. Their actual position does not enter into the final result 

2 1 H++H- I H+-H- '  
" = I (  2 ) + 2 (  2 1 

where H +  and H -  are the numbers of holes near the right and left ends of the root 
distribution. 

Thus, one obtains the same dimensions as in the case of the standard XXX Heisen- 
berg chain. This illustrates the fact that different models may have an identical set of 
conformal parameters. 

To conclude, one should stress that the result for the central charge does not depend 
on the concrete form of the functions s(k) andf(k) when the restrictions (6)-(8) are 
obeyed. On the other hand, it turned out to be crucial that the ground state is formed 
by a sea of real roots fulfilling the Bethe-type system of equations and the low-lying 
excitations over the antiferromagnetic vacuum are described by holes in the sequence 
of quantum numbers IQ}. Both these statements are'supported mainly by numerical 
analysis for the usual XXX chain [ 191. It would be of interest to find an analytic method 
of confirmation extended to the more general form of the magnon energies and phase 
shifts given by (3). 

One of us (VI) is grateful to the Sonderforschungbereich 288 'Diflerentialgeometrie 
und Quantenphysik' for support during his stay in Berlin where this work has been 
completed. 
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